“悟空”暗物质粒子探测卫星 Dark Matter Particle Explorer(DAMPE)
主题:"悟空"暗物质粒子探测卫星 Dark Matter Particle Explorer(DAMPE)
简要目录:
1.1 研发背景(Background)
1.2 研制单位(Developer and Manufacturer)
1.3 目标任务(Satellite Mission)
1.4 基本数据(Details)
1.5 星上载荷(On-board Payload)
1.6 卫星特点(Feature)
1.7 科研成果(Achievement)
1.8 相关技术性文件(Related Documents)
本文由Yumo Bai(Bryce), Boyuan Pan(Alan), Xianghui Chen(Luna)整理及编写
1.1 研发背景(Background)
2011年1月,空间探测暗物质粒子纳入紫金山天文台“一三五”规划。2011年12月,暗物质粒子探测卫星正式立项启动,成为中国战略性先导科技专项空间科学专项首批四颗科学实验卫星之一。
2011-12, the DAMPE mission was officially launched. It is one of five satellite missions in the framework of the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Sciences (CAS).
1.2 研制单位(Developer and Manufacturer)
悟空暗物质粒子探测卫星由中国科学院微小卫星创新研究院抓总研制,中国科学院国家空间科学中心负责卫星工程大总体及地面支撑系统工作,中国科学院紫金山天文台负责科学应用系统研制、建设、运行,西安卫星测控中心负责卫星测控系统任务。
The Wukong dark matter particle detection satellite is developed by the Institute of Microsatellite Innovation of the Chinese Academy of Sciences. The National Space Science Center of the Chinese Academy of Sciences is responsible for the overall satellite engineering and ground support system. The Zijinshan Observatory of the Chinese Academy of Sciences is responsible for the development, construction and operation of the scientific application system. Xi’an The satellite measurement and control center is responsible for satellite measurement and control system tasks.
1.3 目标任务(Satellite Mission)
通过高能量分辨和高空间分辨,观测高能电子和伽玛射线能谱和空间分布,寻找和研究暗物质粒子;通过测量TeV以上的高能电子能谱,研究宇宙线起源;通过测量宇宙线重离子能谱,研究宇宙线传播和加速机制。建造一台能量观测能段覆盖2GeV至10TeV,分辨优于1.5%(对800GeV电子和光子)的星载电磁量能器,将有望在暗物质粒子探测和宇宙线物理这两大科学难题上取得突破,同时为更好地研究伽玛射线天文学等相关重要科学问题提供一个新的平台。
The scientific objectives of Dark Matter Particle Explorer are to search for and study dark matter particles by conducting high-resolution observation of high-energy electron and gamma-ray, to study the origin of cosmic rays by observing the high energy electron and heavy nuclei above TeV, and to study the propagation and acceleration mechanism of the cosmic ray by observing high-energy gamma-ray.
1.4 基本数据(Details)
质量:1850kg
轨道:500公里太阳同步轨道
设计寿命:3年
发射日期:2015年12月17日8时12分
发射地点:酒泉卫星发射中心
运载火箭:长征二号丁
交付日期:2016年3月17日
当前状态:超期服役
Mass at launch: 1850kg
Orbit: Sun-synchronous orbit at 500km altitude and 97.4° inclination.
Designed Life: 3 years
Launch time: 2015-12-17 8:12 (UTC 8)
Launch Site: Jiuquan Satellite Launch Center
Carrier rocket: Long March 2D
Delivery date: 2016-3-17
Current Status: Operational, Extended service
1.5 星上载荷(On-board Payload)
“悟空”号暗物质粒子探测卫星共计搭载了四种不同的有效载荷,分别为,塑闪阵列探测器,硅阵列探测器,BGO量能器以及中子探测器。载荷的具体分布位置由下图所示,更多信息也可参考后续的“暗物质粒子探测卫星-方案研究”一文来进一步了解卫星研发过程中,卫星平台的搭载选择,如中心承力桶结构,外承力筒方案以及杆板式构型方案等多种不同的搭载方案。
载荷一,塑闪阵列探测器(Plastic Scintillation Hodoscope Array):位于整颗卫星的最上层的部分,其主要用于区分入射高能电子(带电粒子)和光子(非带电粒子),鉴别入射高能重离子(Z=1~26)的种类,由两层塑料闪烁体条组成。
注:重离子是指质量数大于4的原子核,即元素周期表氦核以后(原子序数大于2的失去电子的原子)的离子。
Payload -1,Plastic scintillation hodoscope array (PSD): Serves as an anti-coincidence detector. Consists of a double layer of plastic scintillator strips.
载荷二,硅阵列探测器(Silicon-tungsten tracker-converter)则位于塑闪阵列探测器的下层,其主要用于测量宇宙线的方向和电荷,由6个径迹双层,每个由正交摆放的两个单面硅条组成;有三层钨板厚度分别为1cm、2mm、2mm,,插在硅微条的第2、3、4层前面,用作光子转换。
Payload-2,Silicon-tungsten tracker-converter (STK): Measuring the two orthogonal views perpendicular to the pointing direction of the apparatus. Consists of 6 tracks double layers; each consists of two layers of single-sided silicon strip detectors. And three layers of Tungsten plates are inserted in front of tracking layers 2, 3, and 4 for photon conversion.
载荷三,BGO量能器(BGO calorimeter):主要目的是为了测量宇宙线粒子,尤其是高能电子和伽玛射线的能量(5GeV-10TeV),同时根据强子簇射和电磁簇射在量能器中的横向展开和纵向发展的不同,进行粒子鉴别,以剔除高能强子(主要是质子)本底。由14层,每层22根BGO晶体构成,相邻两层正交排列。
Payload-3,BGO calorimeter: Measure the energy (5GeV-10TeV) of the cosmic rays. Consists of 14 layers of Bismuth Germanium Oxide (BGO) bars in a hodoscopic arrangement.
载荷四,中子探测器(Neutron Detector):为了测量宇宙线中的强子(主要为质子)与中子探测器上层的物质发生作用产生的次级中子,根据这些中子在探测器内的能量沉积,可以判断入射粒子的类型,配合BGO探测器来进一步区分质子和电子。中子探测器采用厚度为10 mm的掺硼(B)的塑料闪烁体探测器。
Payload-4,Neutron detector: Detect delayed neutron resulting from hadron shower and to improve the electron/proton separation power. Consists of 16, 1 cm thick, boron-doped plastic scintillator plates of 19.5 × 19.5 cm2 large, each read out by a photomultiplier.
1.6 卫星特色(Features)
悟空号是中国第1个空间高能粒子探测器,是世界上迄今为止观测能段范围最宽、能量分辨率最优的空间探测器,其观测能段是国际空间站阿尔法磁谱仪的10倍,能量分辨比国际同类探测器高3倍以上。在暗物质间接探测方面具有较强的国际竞争力,大大提升了我国暗物质探测水平。工程2011年立项,造价1亿美元,远低于国外同类探测器
悟空号能够测量的宇宙线的能量非常高,可以测量到100TeV;悟空号测量宇宙线能量分辨率高,可以达到1%左右;悟空号测量宇宙线能量的本底比较低,也就是区分电子和质子的能力非常强。
DAMPE is the first high energy particle explorer in space for China. It has the largest detection range and the highest resolution in the world. Its observation energy band is 10 times that of the Alpha Magnetic Spectrometer of the International Space Station, and its energy resolution is more than 3 times higher than that of similar international detectors. It has strong international competitiveness in the indirect detection of dark matter, which has greatly improved the level of dark matter detection in China. The project was established in 2011, with a cost of 100 million US dollars, much lower than similar foreign detectors.
DAMPE has unprecedented sensitivity and energy reach for electrons, photons and cosmic rays (proton and heavy ions). For electrons and photons, the detection range is 5 GeV – 10 TeV, with an energy resolution of about 1% at 800 GeV. For cosmic rays, the detection range is 100 GeV – 100 TeV, with an energy resolution better than 40% at 800 GeV. The geometrical factor is about 0.3 m2 sr for electrons and photons, and about 0.2 m2 sr for cosmic rays. The angular resolution is 0.1° at 100 GeV.
1.7 科研成果(Achievement)
北京时间2019年9月28日,“悟空”号国际合作组在《科学进展》(Science Advances)杂志发表了从40 GeV到100 TeV能段的宇宙线质子精确能谱测量结果。这是国际上首次利用空间实验实现对高达100 TeV的宇宙线质子能谱的精确测量,这对于研究和认识银河系内宇宙线起源、加速机制,以及它们在星际空间和星系际空间中的传播及相互作用等关键问题,有着很重要的价值和意义。
目前在超期服役阶段的“悟空”号工作状态依然良好,正在持续积累数据,未来将陆续发表更多的观测成果,特别是对不同的核素宇宙线的能谱测量结果,将为宇宙线学科发展做出新的贡献。
On September 28, 2019, the International Cooperation Group of DAMPE published the results of the accurate energy spectrum measurement of cosmic ray protons in the energy range from 40 GeV to 100 TeV in the journal Science Advances. This is the first time in the world that space experiments have been used to accurately measure the energy spectrum of cosmic-ray protons up to 100 TeV. This is useful for studying and understanding the origin and acceleration mechanism of cosmic rays in the Milky Way and their propagation in interstellar space and intergalactic space. Interaction and other key issues have very important value and significance.
At present, the working state of DAMPE in the extended service stage is still in good condition, and the data is being continuously accumulated. More observations will be published in the future, especially the measurement results of the energy spectrum of different nuclide cosmic rays. Make new contributions to development.